Homogeneous geodesics in homogeneous Finsler spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous geodesics in homogeneous Finsler spaces

In this paper, we study homogeneous geodesics in homogeneous Finsler spaces. We first give a simple criterion that characterizes geodesic vectors. We show that the geodesics on a Lie group, relative to a bi-invariant Finsler metric, are the cosets of the one-parameter subgroups. The existence of infinitely many homogeneous geodesics on compact semi-simple Lie group is established. We introduce ...

متن کامل

Homogeneous geodesics of left invariant Finsler metrics

In this paper, we study the set of homogeneous geodesics of a leftinvariant Finsler metric on Lie groups. We first give a simple criterion that characterizes geodesic vectors. As an application, we study some geometric properties of bi-invariant Finsler metrics on Lie groups. In particular a necessary and sufficient condition that left-invariant Randers metrics are of Berwald type is given. Fin...

متن کامل

Frames and Homogeneous Spaces

Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2007

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2006.11.004